Abstract

AbstractA radiation‐sensitive, binder‐free, solid‐state supercapacitor (SC) has been fabricated based on spinel nickel cobaltite (NiCo2O4)/zinc oxide nanorods (ZnO NRs) as the electrode material. The enhanced surface area of the electrochemical electrode not only provides a noteworthy enhancement in electrochemical activity, but also the generated photoinduced excitons significantly contribute to achieving outstanding electrode conductivity. This finding reveals that the generated photocharges during UV irradiation participate largely in converting radiation energy into electrochemical energy through redox reactions that allow the specific capacitance to double when compared to an absence of UV radiation. Moreover, the novel SC demonstrates an outstanding cyclic stability of 98.5 and 97 % capacitance retention after 2000 cycles of charge–discharge in the absence and presence of UV irradiation, respectively. Thus, this study opens up an avenue for the direct utilization of radiation‐sensitive nanomaterials for electrochemical energy storage and demonstrates a strong potential for the fabrication of advanced SCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.