Abstract

Photocathodes of quantum efficiency (QE) above 1% at the doubled YAG frequency of 532 nm are very sensitive to the local vacuum environment. These cathodes must have a band gap of less than 2.3 eV, and a work function that is also on the order of ∼ 2V or less. As such, these surfaces are very reactive because they provide many surface states for the residual gases that have positive electron affinities such as oxygen and water. In addition to this problem it is found that the optimal operating point for some of these cesium based cathodes is unstable. Three of the cesium series were tried, the CsAgBiO, the Cs3Sb and the K2CsSb. The most stable material found is the K2CsSb. The required vacuum conditions can be met by a variety of pumping schemes such as using sputter ion diode pumps and baking at 250°C or less for whatever time is required to reduce the pump currents to below 1 μA at room temperature. To obtain the required partial pressure of cesium, a simple, very sensitive, diagnostic gauge has been developed that can discriminate between free alkali atoms and other gases. This Pressure Alkali Monitor (PAM) can be used with cesium sources to provide a low partial pressure using standard feedback techniques. Photocathodes of arbitrary composition have been transferred to a separate vaccuum system and preserved for over 10 days with less than a 25% loss to the QE at 543.5 nm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.