Abstract

Phenol is one of the essential organic pollutants released into the environment because of its high stability and toxicity. It is harmful to organisms, environment, and posing a serious threat to human health at low concentration. This research investigated the photocatalytic degradation process of phenol using a TiO2-Fe catalyst under visible light irradiation and additional H2O2. The effect of various conditions process was applied, including different catalyst doses (0.2, 0.4, 0.6, and 0.8 g/L), pH (3, 6, 8, and 11), irradiation times (60, 90, 120, 150, and 210 minutes) and the presence of H2O2. The degradation process was studied at an initial concentration of phenol 5 mg/L. This study has been decreasing phenol content (90.51%) with catalyst doses 0.6 g/ L sample solution, pH solution 11, reaction time 210 minutes and H2O2 concentration 30%. This final phenol concentration after photodegradation under halogen light was 0.18 mg/L, while sunlight irradiation was 0.11 mg/L. This result is below government regulation as per Permen LH RI No. 5/2014 i.e. 0.5 mg/L. Therefore, this process possible to remove phenol in aqueous such as industrial wastewater or other resources.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.