Abstract

Graphene oxide (GO) membranes have emerged as promising candidates for water purification applications, owing to their unique physicochemical attributes. Nevertheless, the trade-off between permeability and selectivity, coupled with their vulnerability to membrane fouling, poses significant challenges to their widespread industrial deployment. In this study, we introduce an innovative in-situ growth and layer-by-layer assembly technique for fabricating multilayer GO membranes reinforced with bismuth oxybromide (BiOBr) on commonly employed Nylon substrates. This method allows for the creation of two-dimensional lamellar membranes capable of photocatalytic self-cleaning and tunable nanochannel dimensions. The synthesized GO/BiOBr composite membranes exhibit remarkable water permeance rates (approximately 493.9 LMH/bar) and high molecular rejection efficiency (>99 % for Victoria Blue B and Congo Red dyes). Notably, these membranes showcase an enhanced photocatalytic self-cleaning performance upon exposure to visible light. Our work provides a viable route for the fabrication of functionalized GO-based nanofiltration membranes with BiOBr inclusions, offering a synergistic combination of high water permeability, modifiable nanochannels, and effective self-cleaning capabilities through photocatalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call