Abstract

Photocatalysis is a promising technology for energy and environment applications. Herein, a dual-defect heterojunction system of TiO2 hierarchical microspheres with oxygen vacancies modified with ultrathin MoS2−x nanosheets (MoS2−x @TiO2-OV) is designed for simultaneously degrading pollutants and evolving hydrogen. MoS2−x @TiO2-OV exhibits a dramatically enhanced photocatalytic activity with a H2 evolution rate of 2985.16 μmol g−1h−1. In treating the simulated pharmaceutical wastewater, MoS2−x @TiO2-OV is capable of purifying various refractory contaminants, with the highest H2 evolution rate of 41.59 μmol g−1h−1 during enrofloxacin degradation. While treating the simulated coking wastewater, the catalyst achieves a H2 evolution rate of 102.72 μmol g−1h−1 and a mineralization rate of 50%. Computational studies suggest that the dual-defect is superior for the adsorption of H* and producing·OH (‘dual-defect boosted dual-function’). Also, the dual-defect sites significantly boosted the charge-carrier separation and transfer efficiencies. This work highlights the crucial role of defect engineering to develop the energy-recovering wastewater treatment approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.