Abstract

Photocatalytic reforming of ethanol provides an effective way to produce hydrogen energy using natural and nontoxic ethanol as raw material. Developing highly efficient catalysts is central to this field. Although traditional semiconductor/metal heterostructures (e.g., Rh/TiO2) can result in relatively high catalyst performance by promoting the separation of photoinduced hot carriers, it will still be highly promising to further improve the catalytic performance via a cost-effective and convenient method. In this study, we developed a highly efficient photocatalyst for ethanol reformation by preparing a ternary composite structure of Rh/TiO2/g-C3N4. Hydrogen is the main product, and the reaction rate could reach up to 27.5 mmol g-1 h-1, which is ∼1.41-fold higher than that of Rh/TiO2. The catalytic performance here is highly dependent on the wavelength of the light illumination. Moreover, the photocatalytic reforming of ethanol and production of hydrogen were also dependent on the Rh loading and g-C3N4:TiO2 ratio in Rh/TiO2/g-C3N4 composites as well as the ethanol content in the reaction system. The mechanism of the enhanced hydrogen production in Rh/TiO2/g-C3N4 is determined as the improvement in the separation of photoinduced hot carriers. This work provides an effective photocatalyst for ethanol reforming, largely expanding its application in the field of renewable energy and interface science.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.