Abstract

Photocatalytic reduction of nitrobenzenes to corresponding aminobenzenes in aqueous suspensions of titanium(IV) oxide (TiO(2)) containing hole scavengers under various conditions was examined. In photocatalytic reduction of m-nitrobenzenesulfonic acid (m-NBS) in the presence of formic acid (FA) under deaerated conditions, m-aminobenzenesulfonic acid (m-ABS) was produced almost quantitatively in acidic suspensions and high efficiency (>99%) in FA utilization as a hole scavenger was achieved. No re-oxidation of m-ABS occurred in acidic conditions both in the presence and absence of FA. The high yield of m-ABS was explained by strong ability of FA as a hole scavenger and possible repulsion of the reduced functional group (ammonium group, -NH(3)(+)) from the protonated, i.e., positively charged TiO(2) surface in acidic suspensions avoiding re-oxidation of m-ABS. Using TiO(2) samples of various physical properties, which had been synthesized by a solvothermal method and post-calcination at various temperatures, effects of physical properties of the TiO(2) samples on m-ABS yield were also investigated. A linear correlation between the amount of m-NBS adsorbed and the m-ABS yield was observed, suggesting that ability of TiO(2) for m-NBS adsorption is one of the key factors for effective photocatalytic reduction of m-NBS to m-ABS. This photocatalytic system can be applied for reduction of aminonitrobenzenes to corresponding diaminobenzenes (DAB) in the presence of oxalic acid as a hole scavenger. High yields of m-ABS and DAB were achieved even when the reactions were performed in the presence of oxygen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call