Abstract

Water treatment through photocatalysts has become an important topic regarding environmental protection. In the present study, silver and TiO2 (Ag/TiO2) composites for photocatalysts were effectively synthesized by adopting the template induced method. The prepared samples were characterized using XRD, FTIR spectroscopy, SEM, and EDX. The constructed samples’ particle size and shape were evaluated using a SEM, and the XRD patterns showed anatase crystalline phases. Their morphologies were controllable with changing concentration of reactants and calcination temperature. The synthesized composites act as catalyst in the degradation of methylene blue (MB) and reduction of Cr(VI) to Cr(III) under solar irradiation. In both of these activities, the best result has been shown by the 0.01 Ag/TiO2 composite. Methanol is used as the hole scavenger in the reduction of Cr(VI) to Cr(III). While the pH factor is important in the photocatalytic reduction of Cr(VI) to Cr(III). According to observations, S. macrospora and S. maydis were each subject to 0.01 Ag/TiO2 nanocomposites maximum antifungal activity, which was 38.4 mm and 34.3 mm, respectively. The outcomes demonstrate that both photocatalytic and antifungal properties are effectively displayed by the constructed material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.