Abstract

The objective of this work was to analyze the effect of carbon support on the activity and selectivity of N-doped TiO2 nanoparticles. Thus, N-doped TiO2 and two types of composites, N-doped TiO2/CNT and N-doped TiO2/rGO, were prepared by a new environmentally friendly one-pot method. CNT and rGO were used as supports, triethylamine and urea as N doping agents, and titanium (IV) tetraisopropoxide and ethanol as Ti precursor and hydrolysis agent, respectively. The as-prepared photocatalysts exhibited enhanced photocatalytic performance compared to TiO2 P25 commercial catalyst during the photoreduction of CO2 with water vapor. It was imputed to the synergistic effect of N doping (reduction of semiconductor band gap energy) and carbon support (enlarging e−-h+ recombination time). The activity and selectivity of catalysts varied depending on the investigated material. Thus, whereas N-doped TiO2 nanoparticles led to a gaseous mixture, where CH4 formed the majority compared to CO, N-doped TiO2/CNT and N-doped TiO2/rGO composites almost exclusively generated CO. Regarding the activity of the catalysts, the highest production rates of CO (8 µmol/gTiO2/h) and CH4 (4 µmol/gTiO2/h) were achieved with composite N1/TiO2/rGO and N1/TiO2 nanoparticles, respectively, where superscript represents the ratio mg N/g TiO2. These rates are four times and almost forty times higher than the CO and CH4 production rates observed with commercial TiO2 P25.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.