Abstract

Developing photocatalytic systems for CO2 reduction will provide useful and energy-rich compounds and would be one of the most important focuses in the field of “artificial photosynthesis” and “solar fuels”. Such studies have been conducted in the past three decades from the perspective of basic science and for solving the shortage of fossil resources, which include both energy and carbon sources. More recently, focus has been placed on the mitigation of global warming through the reduction of atmospheric CO2. This review summarizes the enormous body of reported literature in this field, particularly studies that describe photocatalytic systems that use transition metal complexes as key players, i.e., as catalysts (Cat) and/or photosensitizers (PS). In addition, we briefly describe the evaluation of various photocatalytic systems, especially the performance of reductants (D) and solvents. Furthermore, we analyze the types of photocatalytic systems and classify each component in these systems according to their role: (1) PS, (2) Cat for CO2 reduction catalysts, and (3) D. Briefly, we summarize the important features of each component and provide typical examples. The next section discusses the photocatalytic abilities of each of the three categories of photocatalytic systems: multicomponent systems comprising PS and Cat, supramolecular photocatalysts comprising a multinuclear complex, and hybrid systems constructed with metal-complex photocatalysts and inorganic materials, such as semiconductors or electrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.