Abstract
This work demonstrates photocatalytic CO2 reduction by a noble-metal-free photosensitizer-catalyst system in aqueous solution under red-light irradiation. A water-soluble Mn(I) tricarbonyl diimine complex, [MnBr(4,4′-{Et2O3PCH2}2-2,2′-bipyridyl)(CO)3] (1), has been fully characterized, including single-crystal X-ray crystallography, and shown to reduce CO2 to CO following photosensitization by tetra(N-methyl-4-pyridyl)porphyrin Zn(II) tetrachloride [Zn(TMPyP)]Cl4 (2) under 625 nm irradiation. This is the first example of 2 employed as a photosensitizer for CO2 reduction. The incorporation of −P(O)(OEt)2 groups, decoupled from the core of the catalyst by a −CH2– spacer, afforded water solubility without compromising the electronic properties of the catalyst. The photostability of the active Mn(I) catalyst over prolonged periods of irradiation with red light was confirmed by 1H and 13C{1H} NMR spectroscopy. This first report on Mn(I) species as a homogeneous photocatalyst, working in water and under red light, illustrates further future prospects of intrinsically photounstable Mn(I) complexes as solar-driven catalysts in an aqueous environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.