Abstract

The photocatalytic reduction of CO2 can generate a number of products with CO and HCO2– being two of the most commonly observed. Frequently, the selective formation of one of these products is presumed to be the result of catalyst design. However, several common variables are present when exploring the photocatalytic CO2 reduction reaction. In order to better understand the origin of selectivity in this reaction, the choices of solvent, electron and proton source, photosensitizer (PS), and catalyst were evaluated in photocatalytic CO2 reduction reactions. Intriguingly, highly selective catalysts for CO or HCO2– under one set of conditions can be transformed by these environmental choices into becoming highly selective for the opposite product while retaining high turnover numbers. This highlights the importance of carefully considering reaction conditions before ascribing catalyst selectivity to an inherent molecular design property.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.