Abstract

The electrochemical oxidation of fac-Mn(CO)3(η2-dpm)Cl (dpm = Ph2PCH2PPh2) is extensively photocatalyzed when a microcrystal−electrode−aqueous (electrolyte) interface is irradiated with light having a wavelength corresponding to that of the 385 nm charge-transfer band. Investigations of the voltammetry of the solid in the presence and absence of light and monitoring the course of the reaction by EPR, electron probe, and electrochemical quartz crystal microbalance techniques indicate that the catalysis is associated with enhanced charge transport caused by doping of fac-Mn(CO)3(η2-dpm)Cl with photooxidized mer-[Mn(CO)3(η2-dpm)Cl]X, where the anion, X-, is incorporated into the solid after mass transport from the aqueous electrolyte. Photocatalysis also is found for the electrochemical oxidation of cis,mer-Mn(CO)2(η1-dpm)(η2-dpm)Br.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.