Abstract

As a promising photocatalytic material in water splitting and organic degradation, the polymeric graphitic g-C3N4 has attracted intensive research interest during the past decade due to the visible light response, nontoxicity, abundance, easy preparation, as well as high thermal and chemical stability. However, the low efficiency owing to the fast charge recombination limits its practical applications. In the present work, we systematically investigated the electronic structure and photocatalytic properties of layered g-C6N6/g-C3N4 heterostructure on the basis of first-principles calculations. The results show that the type-II heterojunction can be established between g-C6N6 and g-C3N4 monolayers due to a perfect lattice match and aligned band edges, facilitating the separation of photogenerated carriers. In addition, it is worthwhile to note that hole effective masses of g-C6N6/g-C3N4 heterostructure can be significantly reduced compared to pristine g-C3N4 due to orbital hybridization between the two mon...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.