Abstract

The binary metal oxide nanomaterials are having applications in various fields like sensors, optics, electrocatalyst and photocatalyst so on. Bi2Sn2O7 with pyrochlore structure is having low band gap energy; hence it is utilized in battery storage and gas sensor applications. In the present work, we have made an attempt to synthesis amine-functionalized Bi2Sn2O7/rGO nanocomposites by a thermal decomposition method and in-situ method; the synthesized nanocomposites were confirmed by XRD, FT-IR and Raman analysis. The AF-Bi2Sn2O7/rGO nanocomposites morphology was confirmed by FE-SEM along with EDX spectroscopy, we obtained different flowers and nest-like morphology. The pure and composite material band gap energy is decreases from 2.6 eV to 1.6 eV. All three nanomaterials Bi2Sn2O7, AF-Bi2Sn2O7, AF-Bi2Sn2O7/rGO nanocomposites (AF–amine functionalized) were utilized for the photocatalytic degradation of methylene blue dye under visible light irradiation. AF-Bi2Sn2O7/rGO nanocomposite showed an excellent photocatalytic activity than pure Bi2Sn2O7 and AF- Bi2Sn2O7.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.