Abstract

The plasmonic Ag-TiO2 (with 0.5 wt% Ag) photocatalyst was prepared on P25 TiO2 surface. The presence of AgNPs on the titania was indicated by the UV–vis spectrum, which showed a plasmonic absorbance band in the visible range (λmax = 455 nm). XPS measurements suggested that Ag was in metallic (Ag) and in oxide forms on TiO2. Ag-TiO2 photocatalyst and TiO2 were embedded in [poly(ethyl acrylate-co-methyl methacrylate; p(EA-co-MMA)] copolymer to attain mechanically stable, photocatalytically active nanocomposite films. The photooxidation of ethanol was slower on the photocatalyst/polymer nanocomposites, but it could be significantly improved by irradiating them with UV light. The photoaging was applied as a post-preparation treatment to improve the photocatalytic activity of the nanocomposite films. Changed surface morphology and the partial destruction of the polymer were supported by AFM and FTIR results. Contact angle measurements were used to determine the surface free energies of the prepared and the photoaged nanocomposite films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.