Abstract

Efficient photocatalysis methods with a production of less number of toxic intermediates are extremely advantageous for water decontamination. The degradation efficiency, specific surface area, stability and porosity will be improving by wrapping of Fe2O3 using appropriate biopolymers. In this work, Fe2O3 reinforced chitosan (Fe2O3@CS) nanocomposite was fabricated using co-precipitation method. The chitosan makes available its surface for the useful generation of the nanocomposite. These wrapping of Fe2O3 on chitosan provides synergistically improved properties that could be attributed to the elevated partition efficiency and faster transfer of the photo-generated charge carriers, which was substantiated by the experimental outcomes from photoluminescence and ESR spectroscopy. The results obtained from DRS analysis entail the reduction in band gap of Fe2O3@CS (2.52 eV) as compared with 3.52 eV of Fe2O3. The results indicated that 89.2% and 94.6% were the maximum degradations correspondingly for MO and OG. The trapping investigation emphasized the involvement of OH radicals in the degradation of dyes over Fe2O3@CS composites. The five cycles of regeneration experiment recommended the superior photostability of the fabricated Fe2O3@CS composite. This work proposed a practical arrangement and subsequent influence of an advanced photocatalyst for the useful remediation dyes from contaminated water without causing any secondary pollution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.