Abstract

Three types of TiO2 were synthesized by a hydrolysis and calcination method. The catalysts were characterized by X-ray powder diffraction (XRD), diffuse reflectance spectrum (DRS), Raman spectra, and X-ray photoelectron spectroscopy (XPS). The XRD and Raman spectra indicated that amorphous TiO2 was successfully obtained at 100 °C. The results indicated that amorphous TiO2 achieved the highest efficiency of desulfurization. The photocatalytic oxidation of dibenzothiophene (DBT), benzothiophene (BT), 4,6-dimethyldibenzothiophene (4,6-DMDBT) and dodecanethiol (RSH) in model oil was studied at room temperature (30 °C) with three catalysts. The system contained amorphous TiO2, H2O2, and [Bmim]BF4 ionic liquid, ultraviolet (UV), which played vitally important roles in the photocatalytic oxidative desulfurization. Especially, the molar ratio of H2O2 and sulfur (O/S) was only 2: 1, which corresponded to the stoichiometric reaction. The sulfur removal of DBT-containing model oil with amorphous TiO2 could reach 96.6%, which was apparently superior to a system with anatase TiO2 (23.6%) or with anatase — rutile TiO2 (18.2%). The system could be recycled seven times without a signicant decrease in photocatalytic activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call