Abstract

Photocatalytic oxidative coupling is an effective way of converting CH4 to high-value-added multi-carbon chemicals under mild conditions, where the breaking of the C-H bond is the main rate-limiting step. In this paper, the Ag3PO4-ZnO heterostructure photocatalyst was synthesized for photocatalytic oxidative coupling of methane (OCM) to C2H6. In addition, an excellent C2H6 yield (16.62 mmol g-1 h-1) and a remarkable apparent quantum yield (15.8% at 350 nm) at 49:1 CH4/Air and 20% RH are obtained, which is more than three times that of the state-of-the-art photocatalytic systems. Ag3PO4 improves the adsorption and dissociation ability of O2 and H2O, benefiting the formation of surface hydroxyl species. As a result, the C-H bond activation energy of CH4 on ZnO was obviously reduced. Meanwhile, the improved separation of photogenerated carriers on the Ag3PO4-ZnO heterostructure also accelerates the OCM process. Moreover, Ag nanoparticles (NPs) derived from Ag3PO4 reduction by photoelectrons promote the coupling of *CH3, which can inhibit the overoxidation of CH4 and increase C2H6 selectivity. This research provides a guide for the design of catalyst and reaction systems in the photocatalytic OCM process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call