Abstract

The photocatalytic oxidation of gaseous benzene, toluene and xylene (BTX) over un-doped, 0.1 and 1 wt% Mn-TiO2 nanoparticles under ultraviolet and visible irradiation was studied in atmosphere of synthetic air or inert gas. The photocatalytic decomposition efficiency and the oxidation products were determined using a Static Photochemical Reactor coupled with FTIR spectroscopy. BTX underwent efficient decomposition over Mn-TiO2 photocatalysts under UV irradiation, more with oxygen presence and less without oxygen. More important toluene and xylene went substantial decomposition over 0.1 mol% Mn-TiO2 under visible irradiation with oxygen presence. The main final oxidation products in the UV photocatalysis of BTX were CO2, CO and H2O, with CO2 and CO yields 4 and 2 respectively. The conversion percentage of benzene, toluene, and xylene to CO2 were 63.6%, 56.4%, 51.8%, and to CO 29%, 26.5%, 23.2%, respectively. In the visible photocatalysis of toluene and xylene the yields of CO were insignificant. Formation of carbon containing deposits on TiO2 surfaces was observed after extensive UV photocatalysis of toluene and xylene, and such by-products surface coverage may reduce the photocatalytic activity of TiO2 samples. Some aspects of the photocatalytic mechanism were examined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call