Abstract

Three consecutive bimolecular reactions are employed to photocatalyze bromide oxidation to bromine. The system consists of a ruthenium(II) complex, [Ru(deeb)2(dmbpy)]2+ (deeb = 4,4'-diethylester-2,2'-bipyridine; dmbpy = 4,4'-dimethyl-2,2'-bipyridine), 4-bromobenzenediazonium tetrafluoroborate (ArN2BF4), and Br-. Varying reagent concentrations allowed us to optimize the sequence of reactions for product formation. The electronically excited ruthenium complex (*Ru) reacts first with ArN2BF4 to produce a ruthenium(III) (RuIII) intermediate, triggering a subsequent reaction with Br-. Transient absorption measured at 486 and 380 nm provides insight into the time-dependent concentrations of *Ru, RuIII, and Br2•-. Without interference of back-electron transfer, the rate constant for an equal concentration bimolecular reaction of Br2•- was determined to be 5 × 109 M-1 s-1. The final products, bromine and tribromide, were spectroscopically characterized, and the turnover number (TON) was 230.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.