Abstract

Advanced oxidation processes (AOPs) using oxygen (O2) as an oxidant represent a low-cost and sustainable wastewater treatment process. Herein, a metal-free nanotubular carbon nitride photocatalyst (CN NT) was prepared to activate O2 to degrade organic contaminants. The nanotube structure allowed for sufficient O2 adsorption, while the optical and photoelectrochemical properties enabled photogenerated charge to be efficiently transferred to the adsorbed O2 to trigger the activation process. The developed CN NT/Vis-O2 system based on O2 aeration degraded various organic contaminants and mineralized 40.7% of chloroquine phosphate within 100 min. In addition, the toxicity and environmental risk of treated contaminants were reduced. Mechanistic studies suggested that the enhanced O2 adsorption capacity and fast charge transfer behavior on CN NT surface led to reactive·O2-, 1O2 and h+ generation, each of which played a distinct role in contaminants degradation. Importantly, the proposed process could overcome the interference from water matrices and outdoor sunlight, and the energy and chemical reagent savings reduced the operating cost to about 1.63 US$·m−3. Altogether, this work provides insights into the potential application of metal-free photocatalysts and green O2 activation for wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call