Abstract

Graphene modified semiconductor photocatalysts (GMSP) have attracted extensive attention due to their great photoactivities and promising prospect in environmental area. Although several GMSP samples have been prepared, the photocatalytic mechanism of these composites under visible-light illumination is still misty. Based on their energy band structures, electron transport model of graphene/titanate nanotubes (TNTs) photocatalyst under visible-light illumination is proposed in this study. Graphene and TNTs make a metal–semiconductor junction, and graphene can play as a sensitizer to endow the photocatalyst with an excellent visible-light response. Quantum tunneling is the major way to achieve the electron transport between graphene and TNTs, and the tunneling probability was calculated in the theory. Moreover, by using scanning tunneling microscope, electron paramagnetic resonance and photoluminescence spectra, the electron transport from graphene to TNTs under visible-light irradiation is confirmed unambiguously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.