Abstract

Biofilms are the most prevalent mode of microbial life in nature and are 10-1000 times more resistant to antibiotics than planktonic bacteria. Persistent biofilm growth associated at the margin of a dental restoration often leads to secondary caries, which remains a challenge in restorative dentistry. In this work, we present the first in vitro evaluation of on-demand photocatalytic inactivation of biofilm on a novel dental adhesive containing TiO2 nanoparticles. Streptococcus mutans biofilm was cultured on this photocatalytic surface for 16 h before photocatalytic treatment with ultraviolet-A (UV-A) light. UV-A doses ranging from 3 to 43 J/cm(2) were applied to the surface and the resulting viability of biofilms was evaluated with a metabolic activity assay incorporating phenol red that provided a quantitative measure of the reduction in viability due to the photocatalytic treatments. We show that an UV-A irradiation dose of 8.4 J/cm(2) leads to one order of magnitude reduction in the number of biofilm bacteria on the surface of the dental adhesives while as much as 5-6 orders of magnitude reduction in the corresponding number can be achieved with a dose of 43 J/cm(2). This material maintains its functional properties as an adhesive in restorative dentistry while offering the possibility of a novel dental procedure in the treatment or prevention of bacterial infections via on-demand UV-A irradiation. Similar materials could be developed for the treatment of additional indications such as peri-implantits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call