Abstract

The efficient storage of solar energy in chemical fuels, such as hydrogen, is essential for the large-scale utilisation of solar energy systems. Recent advances in the photocatalytic production of H(2) are highlighted. Two general approaches for the photocatalytic hydrogen generation by homogeneous catalysts are considered: HX (X = Cl, Br) splitting involving both proton reduction and halide oxidation via an inner-sphere mechanism with a single-component catalyst; and sensitized H(2) production, employing sacrificial electron donors to regenerate the active catalyst. Future directions and challenges in photocatalytic H(2) generation are enumerated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.