Abstract

In this work, we have synthesized CdS quantum dots and also supported CdS nanoparticles on ZSM-5 type metalosilicates (ferrisilicate and aluminosilicate) as CdS–metalosilicate composites. The photocatalytic activity for hydrogen production over the prepared catalysts was investigated. It can be observed that the synthesis of CdS quantum dots by a solvothermal method results in the enhancement of photocatalytic activity of this semiconductor in comparison to other procedures, which has been reported previously. Our objective was to improve the photocatalytic activity of our synthesized CdS nanoparticles; for this purpose, we have supported CdS on metalosilicates and investigated their photocatalytic activity. These composites show high efficiency for hydrogen production under visible light irradiation. This suggests that, due to the high surface area of metalosilicates, the effective and homogenous dispersion of CdS particles on the external surface or within the pores of metalosilicate can be achieved by supporting the nanoparticles which inhibits the agglomeration of the formed semiconductor. We have thus distinguished that supporting of CdS nanoparticles leads to improvement of the photocatalytic activity in water reduction; so that the hydrogen production rate for CdS–metalosilicate composite was about 11 mmol h−1 gcat−1; which is significantly higher than that of unsupported CdS nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.