Abstract

With the foreseeable depletion of fossil fuels and their significant contribution to greenhouse gas emissions, the development of an alternative energy source has become an urgent research field. Among renewable energy resources, solar energy is the largest exploitable resource by far. In view of the intermittency of sunlight, if solar energy is to be a major energy source, it must be converted and stored. An especially attractive approach is to store solar-converted energy in the form of chemical bonds, i.e., by solar-driven water splitting. This chapter will give a brief introduction to the fundamental principles of semiconductor-based photoelectrochemical water splitting into hydrogen and oxygen. The semiconductor photocatalysts for photoelectrochemical water splitting are introduced in details. Strategies to optimize solar to hydrogen conversion efficiencies by optimization of light harvesting semiconductors, surface catalysis, and devices design will also be described.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call