Abstract

The integration of catalytic oxidation with forward osmosis (FO) holds promising potential to address two crucial challenges encountered by FO: fouling and unsustainable performance, but suitable approaches are still rare. Herein, we have successfully developed a photocatalysis-assisted forward osmosis (PFO) system. In the PFO, a self-made porous carbon nitride doped functional carbon nanotube photocatalytic hydrogel film (PCN@CNTM) was engaged in the FO process in an inventive way by simply sticking to the commercial FO membrane surface, preventing damage to the membrane from the catalyst's direct insertion and delaying the assault from the oxidation groups. PFO allowed organic pollutants to decompose in the feed solution (90%) and on the membrane surface, regulating the water chemical potential and giving the FO membrane antifouling properties. This resulted in sustainable water flux (11.8 LMH) with no significant membrane fouling in PFO, whereas in FO alone there was a significant fouling and flux drop (from 12.73 to 7.23 LMH in 4 h). Moreover, the expensive FO membrane was protected while the hydrogel film can be replaced on demand. The PFO exemplifies the concept of synergistic technology integration, presenting a new perspective on harnessing the strengths of distinct technologies in a mutually beneficial manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call