Abstract

Exploiting effective photocatalytic materials especially co-catalysts is an effective solution to enhance solar hydrogen generation. In this work, we firstly introduce FeSe as highly efficient co-catalyst on the surface of CdS nanoparticles for photocatalytic H2 evolution under visible light irradiation. The optimized 2 wt% FeSe/CdS composite showed the highest photocatalytic H2 evolution activity of 204.4 μL/h with an apparent quantum efficiency of 6.71% at 420 nm, which is about 7 times higher than that of pure CdS nanoparticles. More importantly, 2 wt% FeSe/CdS composite also exhibits higher photocatalytic activity than that of 2 wt% Pt/CdS composite under the same condition. The higher photocatalytic H2 evolution property of FeSe/CdS composite is due to that the photo-generated electrons can be driven by the build-in field and transferred to the surface of FeSe causing electron-hole separation. This work may provide the potential applications of FeSe as a co-catalyst for photocatalytic H2 evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.