Abstract

Recycling of optional water source especially greywater and energy recovery from effluent is garnering impetus owing to clean water scarcity and energy crisis. In current work, photocatalytic fuel cell (PFC) utilizing a TiO2/ZnO/Zn photoanode and a CuO/Cu photocathode was developed for efficient greywater treatment and power generation. The photoelectrodes were measured by field-emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) and photoluminescence (PL) measurements. Using 2 layers of TiO2/ZnO on Zn film, chemical oxidation demand (COD) removal efficiency had achieved 73% in the UV light-activated PFC system. The electrical generation was concomitantly found, in which the open-circuit voltage (Voc), short-current density (Jsc) and maximum power density (Pmax) were 634 mV, 0.1612 mA cm-2 and 0.0257 mW cm-2, respectively. The PFC has also revealed high antibacterial activity towards and Escherichia coli (E. coli), highlighting its potential photocatalytic and antibacterial properties for greywater reused and clean energy production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.