Abstract

Abstract Photocatalysis speeds up the photoreaction in the presence of a catalyst. TiO2 has low toxicity, less resistance and less corrosion and has semiconductor properties. Its strong oxidative potential of the positive holes oxidizes water to create hydroxyl radicals. Moreover, TiO2 has been proven to be a tremendous photocatalyst compound by which many organic substrates have been shown to be oxidatively degraded under UV irradiation. In this research the photocatalytic effect of TiO2 on degradation of Brilliant Green (BG) was studied. In conjunction the effect of dopants such as Zn and Cu on photocatalysis of TiO2 were also studied. Structural and morphological properties of TiO2 were characterized by SEM and XRD. From this research the initial concentration of sample, pH of samples, chemical structure of dyes and catalyst loading were most valuable parameters for dye degradation. TiO2 showed excellent result on degradation of BG compared with doped TiO2. 99% degradation was obtained in presence of TiO2, followed by TiO2/Zn for 87% and TiO2/Cu for 46%. TiO2 doped with transition metals can increase or decrease photocatalytic degradation of dyes.

Highlights

  • Environmental pollutant is the major cause for most of health illness

  • TiO2 doped with Cu gave more porous structure than TiO2 alone this may be attributed to prevention of TiO2 agglomeration

  • Comparison between TiO2, TiO2/Zn and TiO2/Cu TiO2 showed excellent result on degradation of Brilliant Green (BG) compared with doped TiO2. 99% degradation was obtained in presence of TiO2, followed by TiO2/Zn for 87% and TiO2/Cu for 46%

Read more

Summary

Introduction

Environmental pollutant is the major cause for most of health illness. Water is the main source of contamination and pollution which effects health through biomagnification. Water gets polluted by harmful chemicals, dyes, oils etc. All the wastewater that contains harmful chemicals is drained into nearby water bodies. This causes water pollution and will lead to various health problems to flora and fauna. Dyes released into environment can impart color to water and decrease or stop capacity of water reoxygenation by blocking sunlight thereby increasing BOD value. These conditions can prevent or disturb the growth of aquatic plants and animals [2,3].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.