Abstract
Tetracycline (TC) is a frequently administered antibiotic in many countries, due to its low price and excellent potency. However, certain antibiotics can be hazardous to living creatures due to their accumulation by complexation with metal ions which can contribute to teratogenicity and carcinogenicity. In this investigation, copper oxide-ferric oxide nanocomposite (CuO/Fe2O3 nanocomposite) was synthesized employing Psidium guajava (P. guajava) leaf extract as a reductant as well as a capping agent in an environment friendly and economical green synthesis method. The as-synthesized CuO/Fe2O3 nanocomposite was comprehensively characterized using various sophisticated techniques and its efficiency as a photocatalyst for degradation of tetracycline (TC) antibiotic and toxic dyes, i.e., rhodamine B (RhB) and methylene blue (MB) were investigated. The CuO/Fe2O3 nanocomposite exhibited exceptional efficiency for degradation of TC antibiotic (88% removal in 80min), RhB (96% removal in 40min), and MB (93% elimination in 40min) with apparent rate constant of 0.048, 0.068, and 0.032min-1, respectively. In the degradation experiments, photocatalytic activity of CuO/Fe2O3 nanocomposite was studied by varying different factors such as time of contact, catalyst dose, and solution pH. The role of reactive species in antibiotics and dye degradation was validated by radical scavenging studies which indicated that.OH radical played a critical role in photocatalytic decomposition. Furthermore, liquid chromatography-mass spectrometry (LC-MS) investigations were employed to anticipate a plausible mechanism for TC degradation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.