Abstract
Thiophene is one of the sulfur compounds in the petroleum fraction that can be harmful to living things and lead to a critical effect on the ecosystem. Photocatalytic degradation is one of the promising methods in treating wastewater as it can mineralization of pollutants into carbon dioxide and water. Other than that, this method is non-toxic and relatively low cost. The production of hydroxyl radicals playing a vital role in the degradation of organic pollutants. It has been claimed that the usage of zinc oxide (ZnO) nanoparticles could give an excellent degradation process as this photocatalyst have high photosensitivity, low cost and chemically stable. However, the preparation method of ZnO nanoparticles will affect the agglomeration, particle size, shape and morphology of particles and lead to influence the photocatalytic activity in degrading thiophene. Therefore, this study focused on the effectiveness of ZnO nanoparticles in the presence of fibrous nanosilica (KCC-1) and polyethylene glycol (PEG) as the capping agent to degrade synthetic thiophene. ZnO/KCC-1 had been synthesized via the precipitation method and characterized by using Fourier Transform Infrared (FTIR). The chemical bond and nature of the photocatalyst from the FTIR results proved that the synthesis process to produce the ZnO/KCC-1 was succeed. The large surface area of KCC-1 increases the effectiveness of ZnO which is supported by the experimental data. Accordingly, the optimum condition for photocatalytic degradation of thiophene is under pH 7 by using ZnO/KCC-1 as photocatalyst. Hence, it is believed that this research could be implemented to remove the thiophene in petroleum fraction from the actual industrial effluents and this can preserve nature in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.