Abstract

In this study, the photocatalytic degradation of organic reactive dyes have been investigated using MnTiO3/TiO2 heterojunction composites in the presence of electron acceptors under UV-Visible light irradiation. This MnTiO3/TiO2 heterojunction composites were prepared by annealing different mass ratios of pyrophanite MnTiO3 (3-11 wt%) and TiO2 at 300°C. All the MnTiO3/TiO2 heterojunction composites were characterized by spectral techniques like X-ray diffraction (XRD), scanning electron microscope (SEM) and diffused reflectance UV-visible spectroscopic analysis (DRS). Among them, 9 wt% MnTiO3/TiO2 heterojunction composites exhibited higher photocatalytic activity for the degradation of Reactive Blue 4 (RB 4). The photocatalytic efficiency of 9 wt% MnTiO3/TiO2 heterojunction composites was further enhanced by the addition of substantial amount of electron acceptors like hydrogen peroxide (H2O2) and ammonium peroxydisulfate ([NH4]2S2O8). The presence of oxidants (electron acceptors) facilitates the fast degradation of dye solution even in higher concentration upto 200 mg/L. The photocatalytic activity of MnTiO3/TiO2 heterojunction composites was also studied for the degradation of other four different structured reactive dyes. The extent of mineralization of these organic reactive dyes during photocatalytic degradation was estimated from COD analysis. MnTiO3/TiO2 heterojunction composites was also found to have good photostability in the presence of oxidants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.