Abstract

In order to improve the visible light response, N-doping ZnS (N-ZnS) nanospheres with Zn vacancy and porous surface were prepared by a simple one-pot hydrothermal method. Characterizations and density functional theory simulations showed excellent visible light response of N-ZnS. N-doping introduced impurity energy levels, which led to orbital hybridization and changed the original dipole moment. The presence of ortho Zn vacancy (O-Znv) can effectively reduce e--h+ recombination and photocorrosion. Furthermore, O-Znv caused lattice distortion (twisted the -S-Zn-N-(O-Znv)-S-Zn-S- chemical bond chain), resulting in "vacancy effect" to accelerate e- flow. Under visible light, the photocatalytic degradation efficiency of tetracycline (TC) and 2,4-dichlorophenol (2,4-DCP) was 90.31% and 60.84%, respectively. TOC degradation efficiency was 31.4% and 25.6%, respectively. Combined with Fukui index and LC-MS methods, it was found that TC and 2,4-DCP were degraded under the constant attack of active substances such as ·OH. This work can provide a reference for the application of catalytic materials in the field of visible light photocatalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.