Abstract

Semiconductor photocatalysis often leads to partial or complete mineralization of organic pollutants. Upon irradiation with UV/visible light, semiconductors catalyze redox reactions in presence of air/O 2 and water. Here, the potential of a common semiconductor, ZnO, has been explored as an effective catalyst for the photodegradation of two model dyes: Methylene Blue and Eosin Y. A 16 W lamp was the source of UV-radiation in a batch reactor. The effects of process parameters like, catalyst loading, initial dye concentration, airflow rate, UV-radiation intensity, and pH on the extent of photo degradation have been investigated. Substantial reduction of COD, besides removal of colour, was also achieved. A rate equation for the degradation based on Langmuir–Hinshelwood model has been proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.