Abstract

Series of tin-doped titania nanoparticles with varying tin content in the range 0–20mol% have been prepared by solution combustion synthesis route using urea as a fuel. The structure, surface morphology and optical activity of Sn-doped TiO2 nanoparticles were investigated by various analytical techniques such as powder XRD, SEM, TEM, UV–vis and N2 adsorption study. The crystalline structures of the various phases were studied by rietveld refinement of the XRD data. The photocatalytic performance of Sn-doped titania nanoparticles were tested for degradation of MB under UV and visible light irradiation. The results reveal that the photocatalytic activity increases with increase in tin content which may be due to decrease in crystallite size with increase in surface area. The doping of Sn into TiO2 lattice hinders the recombination of electrons and holes thus enhance the quantum efficiency of photocatalytic reaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call