Abstract

TiO2-anatase is obtained directly by chemical vapor condensation (T-95), or from a commercial catalyst (P-25). TiO2 nanoparticles and coconut shell activated carbon, CSAC, are mixed with mass ratios of 1/1 (CT-1, CP-1) and 2/1 (CT-2, CP-2), respectively. These nanomaterials are characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) surface area, and X-ray photoelectron spectroscopy (XPS). The catalyst obtained from the CVC process is better than the commercial one in a comparison of the physico-chemical properties, and was also confirmed by the photocatalytic degradation of methylene blue (MB). The composited catalysts (CSAC/TiO2) are better than CSAC or naked TiO2 only. At the same TiO2 to CSAC mass ratio, the MB removal efficiencies followed the trend: CT-2>CT-1>CP-2>CP-1>T-95>CSAC>P-25. Furthermore, the advantages of the CT-2 catalyst revealed its practical potential to treat pollutants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.