Abstract

Lanthanum (La) nanocomposites LaFeO3, LaNiO3, and LaCoO3 were synthesized using a sol-gel method, and different La to-metal (Fe, Ni, or Co) ratios were attained using various concentrations of salts. The resulting composites were calcined at 540 °C and characterized by XRD, SEM-EDX, FT-IR spectroscopy, XPS, thermogravimetric analysis (TGA), and PL spectroscopy. The activity of the lanthanum composites (LaFeO3, LaNiO3, and LaCoO3) was studied using the photocatalytic degradation of methylene blue (MB) and ortho-toluidine blue (o-TB) under visible light with a wavelength below 420 nm. The change in the concentration of dyes was monitored by using the UV-Vis spectroscopy technique. All composites appeared to have some degree of photocatalytic activity, with composites possessing an orthorhombic crystal structure having higher photocatalytic activity. The LaCoO3 composite is more efficient compared with LaFeO3 and LaNiO3 for both dyes. High degradation percentages were observed for the La composites with a 1:1 metal ratio.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.