Abstract

The incorporation of graphene with metal oxide has been widely explored in various fields, including energy storage devices, optical applications, biomedical applications, and water remediation. This research aimed to assess the impact of reduced graphene oxide (RGO) doping on the photocatalytic and anticancer properties of In2O3 nanoparticles. Pure and In2O3/RGO nanocomposites were effectively synthesized using the single-step microwave hydrothermal process. XRD, TEM, SEM, EDX, XPS, Raman, UV-Vis, and PL spectroscopy were carefully utilized to characterize the prepared samples. XRD data showed that synthesized In2O3 nanoparticles had high crystallinity with a decreased crystal size after RGO doping. TEM and SEM images revealed that the In2O3 NPs were spherical and uniformly embedded onto the surface of RGO sheets. Elemental analysis of In2O3/RGO NC confirmed the presence of In, O, and C without impurities. Raman analysis indicated the successful fabrication of In2O3 onto the RGO surface. Uv-Vis analysis showed that the band gap energy was changed with RGO addition. Raman spectra confirmed that In2O3 nanoparticles were successfully anchored onto the RGO sheet. PL results indicated that the prepared In2O3/RGO NCs can be applied to enhance photocatalytic activity and biomedical applications. In the degradation experiment, In2O3/RGO NCs exhibited superior photocatalytic activity compared to that of pure In2O3. The degradation efficiency of In2O3/RGO NCs for MB dye was up to 90%. Biological data revealed that the cytotoxicity effect of In2O3/RGO NCs was higher than In2O3 NPs in human colorectal (HCT116) and liver (HepG2) cancer cells. Importantly, the In2O3/RGO NCs exhibited better biocompatibility against human normal peripheral blood mononuclear cells (PBMCs). All the results suggest that RGO addition improves the photocatalytic and anticancer activity of In2O3 NPs. This study highlights the potential of In2O3/RGO NCs as an efficient photocatalyst and therapeutic material for water remediation and biomedicine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.