Abstract

The photodegradation of high density polyethylene (HDPE) using CaO nanoparticles as a catalyst was carried out using 500 W lamp. After exposure, morphology as well as thermal properties of the HDPE was investigated by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). SEM results showed that the HDPE is more prone to crack into small fragments, which indicated a rise in crystallinity with different amounts of catalyst i.e. CaO nanoparticles. The DSC results confirmed the remarkable influence of photodegradation on degree of crystallinity (XC%), fusion enthalpy (ΔH J g-1) and melting temperature (Tm) of HDPE. Infrared spectrometry (FTIR) demonstrated all functional groups of HDPE, present before and after photodegradation. Overall results showed that HDPE was photodegraded into small fragments successfully by using CaO nanopartilces, where different functional groups such as carbonyl, esters and vinyl were obtained during chain scission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call