Abstract

The direct photocatalytic degradation of dye pollutant sulforhodamine B (SRB) in aqueous TiO2 dispersions has been examined and compared to the photosensitization process. The mineralization extent of SRB degradation, the formation of intermediates and final products were monitored to assess the degradation pathways caused by direct photocatalysis. In the initial stage of the direct photocatalysis, SRB is mainly oxidized by a positive hole upon band-gap excitation of TiO2 by UV light (330 nm<λ<380 nm) and subsequently undergoes the similar degradation pathways as occur in the photosensitization under visible irradiation (λ>420 nm). Diethylamine, N,N-diethylacetamide, N-ethylformamide, N,N-diethylformamide, formic acid and acetic acid were identified as intermediate species; SO42−, NH4+, CO2 and H2O are final mineralized products produced in the direct photocatalytic process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.