Abstract

TiO2 pillared montmorillonites were prepared by introducing Ti4+ into a layer of montmorillonite modified with or without cetyltrimethylammonium bromide. The components and texture of the prepared composites were characterized by thermogravimetric analysis, X-ray powder diffraction and scanning electron misroscopy. The adsorption and photocatalytic degradation performance of a model environmental endocrine disruptor, dimethyl phthalate ester, were investigated using this newly prepared hydrophobic TiO2 pillared montmorillonite photocatalyst. The adsorption of dimethyl phthalate ester from water varied from 9% to 28% on the prepared hydrophobic photocatalyst. Although the experimental results showed that the photocatalytic activity of the hydrophobic photocatalyst was slightly lower than that of hydrophilic one, electron spin resonance verified that hydroxyl radicals were also generated in hydrophobic TiO2 pillared montmorillonite photocatalyst under UV irradiation. To elucidate the decomposition mechanism of dimethyl phthalate ester, 12 main photocatalytic intermediates were identified during the photocatalytic degradation process, and a plausible degradation mechanism was also proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.