Abstract

The present study reports the photocatalytic degradation of analgesic drug diclofenac using the hydrothermally prepared TiO2-CdS heterojunction catalyst. The results suggest that the prepared catalysts exhibited excellent photocatalytic activity under visible light irradiation. The photodegradation kinetics were well fitted to the pseudo-first-order reaction. The apparent reaction rate constant for TC5 catalyst in the diclofenac degradation was 0.02316min-1. Mineralisation of diclofenac using TC5 photocatalyst was around 86% within 4h of irradiation time. The operating parameters such as optimal catalyst dosage, apparent solution pH and the effect of initial diclofenac concentration were also studied using the TC5 catalyst. The role of active species in the degradation mechanism was elucidated and it was found that the hydroxyl radical is the main active species in the diclofenac degradation mechanism. The charge transfer between heterojunction catalysts is facilitated by direct Z-scheme heterojunction structure. The coupled photocatalysts also showed good photochemical stability and reusability over five successive reaction cycles. The tentative degradation pathway has been devised based on LC-MS peaks, and it is found that only m/z 224, m/z 178 and m/z 124 were persisted at the end of the reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.