Abstract

This study reports the synthesis and characterization of composite nitrogen and fluorine co-doped titanium dioxide (NF-TiO(2)) for the removal of contaminants of concern in wastewater under visible and solar light. Monodisperse anatase TiO(2) nanoparticles of different sizes and Evonik P25 were assembled to immobilized NF-TiO(2) by direct incorporation into the sol-gel or by the layer-by-layer technique. The composite films were characterized with X-ray diffraction, high-resolution transmission electron microscopy, environmental scanning electron microscopy, and porosimetry analysis. The photocatalytic degradation of atrazine, carbamazepine, and caffeine was evaluated in a synthetic water solution and in an effluent from a hybrid biological concentrator reactor (BCR). Minor aggregation and improved distribution of monodisperse titania particles was obtained with NF-TiO(2)-monodisperse (10 and 50 nm) from the layer-by-layer technique than with NF-TiO(2) +monodisperse TiO(2) (300 nm) directly incorporated into the sol. The photocatalysts synthesized with the layer-by-layer method achieved significantly higher degradation rates in contrast with NF-TiO(2)-monodisperse titania (300 nm) and slightly faster values when compared with NF-TiO(2)-P25. Using NF-TiO(2) layer-by-layer with monodisperse TiO(2) (50 nm) under solar light irradiation, the respective degradation rates in synthetic water and BCR effluent were 14.6 and 9.5 × 10(-3) min(-1) for caffeine, 12.5 and 9.0 × 10(-3) min(-1) for carbamazepine, and 10.9 and 5.8 × 10(-3) min(-1) for atrazine. These results suggest that the layer-by-layer technique is a promising method for the synthesis of composite TiO(2)-based films compared to the direct addition of nanoparticles into the sol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.