Abstract
Abstract We report the synthesis of nanostructure ZnO semiconductor with ∼2.1 nm diameter using a chemical precipitation method. The resulting nanoparticles were characterized by X-ray diffraction analysis (XRD), Fourier-transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The optical properties were investigated by UV–vis and fluorescence techniques. The absorption spectra exhibit a sharp absorption edge at ∼334 nm corresponding to band gap of ∼3.7 eV. The fluorescence spectra displayed a near-band-edge ultraviolet excitonic emission at ∼410 nm and a green emission peak at ∼525 nm, due to a transition of a photo-generated electron from the conduction band to a deeply trapped hole. The photocatalytic activity of the prepared ZnO nanoparticles has been investigated for the degradation of ciprofloxacin drug under UV light irradiation in aqueous solutions of different pH values. The results showed that the photocatalytic degradation process is effective at pH 7 and 10, but it is rather slow at pH 4. Higher degradation efficiency (∼50%) of the drug was observed at pH 10 after 60 min. Photodegradation of the drug follows a pseudo-first-order kinetics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.