Abstract

In this work, g-C3N5/CdS dendrite/AgNPs nanocomposite was synthesized using a mixed method consisting of hydrothermal, ultrasonic and chemistry reduction with sodium borohydride. The characterization of the as-prepared nanocomposite was done using infrared spectroscopy, X-ray, scanning electron microscopy, transmission electron microscopy, BET, and DRS methods was performed. The DRS results showed that the g-C3N5/CdS dendrite/AgNPs nanocomposite nanocomposite has a band gap of 1.08 eV. This band gap indicates the good capability of this nanocomposite as a photocatalyst. Accordingly, the photocatalytic degradation of chlorpyrifos (CPS) in was performed in an aqueous solution of the synthesized nanocomposite. The results showed that almost 95.3% of this poison, a concentration of 50 mg L−1 was degraded in the presence of 0.05 g L−1 of nanocomposite at pH = 5 in a 60 min. Hydroxide radicals and holes play a significant role in the photocatalytic process. The reusability of the nanocomposite with excellent performance in the degradation of photocatalytic toxins caused by the reduction in the electron-hole recombination and the high surface area of the nanocomposite are among the unique features of this work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.