Abstract
Photocatalytic hydrogen peroxide (H2O2) production and its application in advanced oxidation processes (AOPs) are regarded as low-cost and environmentally friendly wastewater treatment processes. Herein, by modifying a small amount of sulphide on the zeolitic imidazolate framework-8 (ZIF-8), a ZnS@ZIF-8 composite and used for photocatalytic H2O2 production to degrade chlorinated organic pollutants under simulated sunlight (SSL). ZnS@ZIF-8 composite could enhance the separation of photo-induced charge carriers, promote electron transfer from zinc sulphide (ZnS) to ZIF-8, which exhibited good selectivity for the two-electron oxygen reduction reaction (2e--ORR) and two-electron water oxidation (2e--WOR) pathways. Based on oxygen (O2) activation, the developed ZnS@ZIF-8/O2/SSL system could achieve 6.43 mmol/L H2O2 production within 150 min, which was approximately 8.66 and 10.36 times higher than that of the ZnS/O2/SSL and ZIF-8/O2/SSL systems, respectively. In the ZnS@ZIF-8/O2/SSL system, the ORR, WOR and H2O2 photolysis led to the generation of hydroxyl radical (•OH), while the photochemical behavior of ZnS in ZnS@ZIF-8 composite resulted in the generation of active hydrogen (*H). Benefitting from the high concentration of H2O2 and the coexistence of redox species in the ZnS@ZIF-8/O2/SSL system, various chlorinated organic pollutants could be dechlorinated and mineralized. In addition, a possible mechanism for photocatalytic H2O2 production was also proposed. Importantly, the proposed process did not involve an additional sacrificial agent or Fenton-like catalysts. This work provides insights into the potential application of ZnS@ZIF-8 composite for H2O2 production and wastewater treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.