Abstract
Heterogeneous photocatalysis is a promising technique for removing pollutants from water. In this work, supercritical antisolvent (SAS)-micronized ZnO (ZnOSAS) is coupled with commercial anatase TiO2 (PC50) to study the photocatalytic degradation of ceftriaxone under UV and visible light. Diffuse ultraviolet-visible reflectance (UV-vis DRS) measurement revealed that the presence of ZnO leads to a slight absorption in the visible region. Wide-angle X-ray diffraction (WAXD) analysis showed the presence of both ZnO wurtzite and TiO2 anatase crystalline phases in the composite. Photocatalytic tests proved that the activity of the ZnOSAS/PC50 composite is higher than that of commercial ZnO, SAS-micronized ZnO, and PC50, allowing complete ceftriaxone degradation under UV light after only 2 min of irradiation time. In contrast, about 90% of ceftriaxone degradation is achieved after 180 min of visible-light irradiation. The photocatalytic results for an experiment carried out in the presence of probe scavenger molecules for reactive oxygen species show that hydroxyl radicals and positive holes are both reactive species involved in the ceftriaxone photocatalytic degradation mechanism. Finally, reuse cycles of the ZnOsas/PC50 composite are performed, demonstrating the stability and recyclability of the photocatalyst.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.