Abstract

A facile, one-step synthesis of graphene-oxide (GO)/Ag3PO4 was prepared. The as-prepared samples were characterized by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS) and fourier transformed infrared (FT-IR) spectroscopy. The SEM image indicated that Ag3PO4 particles were mainly distributed on the surface of GO sheets uniformly. DRS analysis revealed that the samples had good visible light response. The photocatalytic activity of the composites was evaluated by the degradation of Rhodamine B (RhB) and Bisphenol A (BPA). The results indicated that the photocatalytic performance of GO/Ag3PO4 was greatly enhanced after introduction of GO. The photocatalytic degradation efficiency of colorless chemical pollutants (BPA) over GO/Ag3PO4 was higher than that of Ag3PO4, and the possible degradation path was proposed by liquid chromatography mass spectrometry (LC-MS) analysis. Moreover, the photocatalytic stability was discussed by XRD and FT-IR spectroscopy analysis. Based on the experimental results, a possible visible-light photocatalytic degradation mechanism was also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call